机器学习之深度学习入门
个人公众号 yk 坤帝获取更多学习资料,学习建议1.1.4 深度学习之“深度”深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。这一领域的其他名称包括分层表示
个人公众号 yk 坤帝
获取更多学习资料,学习建议
本文用浅显易懂的语言精准概括了机器学习的相关知识,内容全面,总结到位,剖析了机器学习的what,who,when, where, how,以及why等相关问题。从机器学习的概念,到机器学习的发展史,再到机器学习的各类算法,最后到机器学习的最新应用,十分详尽。适合小白快速了解机器学习。
你是否使用像Siri或Alexa这样的个人助理客户端?你是否依赖垃圾邮件过滤器来保持电子邮件收件箱的干净?你是否订阅了Netflix,并依赖它惊人的准确推荐来发现新的电影可看?如果你对这些问题说“是”,恭喜你!你已经很好地利用了机器学习!
虽然这听起来很复杂,需要大量的技术背景,但机器学习实际上是一个相当简单的概念。为了更好地理解它,让我们研究一下关于机器学习的what,who,when, where, how,以及why。
1.什么是机器学习?
One day ladies will take their computers for walks in the park and tell each other, “My little computer said such a funny thing this morning”.
—Alan Turing
在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习和人工智能都出现在不计其数的文章中,而这些文章通常都发表于非技术出版物。
我们的未来被描绘成拥有智能聊天机器人、自动驾驶汽车和虚拟助手,这一未来有时被渲染成可怕的景象,有时则被描绘为乌托邦,人类的工作将十分稀少,大部分经济活动都由机器人或人工智能体(AI agent)来完成。对于未来或当前的机器学习从业者来说,重要的是能够从噪声中识别出信号,从而在过度炒作的新闻稿中发现改变世界的重大进展。
我们的未来充满风险,而你可以在其中发挥积极的作用:读完本书后,你将会成为人工智能体的开发者之一。那么我们首先来回答下列问题:到目前为止,深度学习已经取得了哪些进展?深度学习有多重要?接下来我们要做什么?媒体炒作是否可信?
1.1 人工智能、机器学习与深度学习
首先,在提到人工智能时,我们需要明确定义所讨论的内容。什么是人工智能、机器学习与深度学习(见图1-1)?这三者之间有什么关系?
图1-1 人工智能、机器学习与深度学习
1.1.1 人工智能
人工智能诞生于20世纪50年代,当时计算机科学这一新兴领域的少数先驱开始提出疑问:计算机是否能够“思考”?我们今天仍在探索这一问题的答案。人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。
因此,人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。例如,早期的国际象棋程序仅包含程序员精心编写的硬编码规则,并不属于机器学习。在相当长的时间内,许多专家相信,只要程序员精心编写足够多的明确规则来处理知识,就可以实现与人类水平相当的人工智能。这一方法被称为符号主义人工智能(symbolic AI),从20世纪50年代到80年代末是人工智能的主流范式。在20世纪80年代的**专家系统(expert system)**热潮中,这一方法的热度达到了顶峰。
虽然符号主义人工智能适合用来解决定义明确的逻辑问题,比如下国际象棋,但它难以给出明确的规则来解决更加复杂、模糊的问题,比如图像分类、语音识别和语言翻译。于是出现了一种新的方法来替代符号主义人工智能,这就是机器学习(machine learning)。
1.1.2 机器学习
在维多利亚时代的英格兰,埃达•洛夫莱斯伯爵夫人是查尔斯•巴贝奇的好友兼合作者,后者发明了分析机(Analytical Engine),即第一台通用的机械式计算机。虽然分析机这一想法富有远见,并且相当超前,但它在19世纪三四十年代被设计出来时并没有打算用作通用计算机,因为当时还没有“通用计算”这一概念。
它的用途仅仅是利用机械操作将数学分析领域的某些计算自动化,因此得名“分析机”。1843年,埃达•洛夫莱斯伯爵夫人对这项发明评论道:“分析机谈不上能创造什么东西。它只能完成我们命令它做的任何事情……它的职责是帮助我们去实现我们已知的事情。”
随后,人工智能先驱阿兰•图灵在其1950年发表的具有里程碑意义的论文“计算机器和智能”a中,引用了上述评论并将其称为“洛夫莱斯伯爵夫人的异议”。图灵在这篇论文中介绍了图灵测试以及日后人工智能所包含的重要概念。在引述埃达•洛夫莱斯伯爵夫人的同时,图灵还思考了这样一个问题:通用计算机是否能够学习与创新?他得出的结论是“能”。
机器学习的概念就来自于图灵的这个问题:对于计算机而言,除了“我们命令它做的任何事情”之外,它能否自我学习执行特定任务的方法?计算机能否让我们大吃一惊?如果没有程序员精心编写的数据处理规则,计算机能否通过观察数据自动学会这些规则?
图灵的这个问题引出了一种新的编程范式。在经典的程序设计(即符号主义人工智能的范式)中,人们输入的是规则(即程序)和需要根据这些规则进行处理的数据,系统输出的是答案 (见图1-2)。利用机器学习,人们输入的是数据和从这些数据中预期得到的答案,系统输出的是规则。这些规则随后可应用于新的数据,并使计算机自主生成答案。
图1-2 机器学习:一种新的编程范式
机器学习系统是训练出来的,而不是明确地用程序编写出来的。将与某个任务相关的许多示例输入机器学习系统,它会在这些示例中找到统计结构,从而最终找到规则将任务自动化。举个例子,你想为度假照片添加标签,并且希望将这项任务自动化,那么你可以将许多人工打好标签的照片输入机器学习系统,系统将学会将照片与特定标签联系在一起的统计规则。
虽然机器学习在20世纪90年代才开始蓬勃发展,但它迅速成为人工智能最受欢迎且最成功的分支领域。这一发展的驱动力来自于速度更快的硬件与更大的数据集。机器学习与数理统计密切相关,但二者在几个重要方面有所不同。
不同于统计学,机器学习经常用于处理复杂的大型数据集(比如包含数百万张图像的数据集,每张图像又包含数万个像素),用经典的统计分析(比如贝叶斯分析)来处理这种数据集是不切实际的。因此,机器学习(尤其是深度学习)呈现出相对较少的数学理论(可能太少了),并且是以工程为导向的。这是一门需要上手实践的学科,想法更多地是靠实践来证明,而不是靠理论推导。
1.1.3 从数据中学习表示
为了给出深度学习的定义并搞清楚深度学习与其他机器学习方法的区别,我们首先需要知道机器学习算法在做什么。前面说过,给定包含预期结果的示例,机器学习将会发现执行一项数据处理任务的规则。因此,我们需要以下三个要素来进行机器学习。
‰
**输入数据点。**例如,你的任务是语音识别,那么这些数据点可能是记录人们说话的声音文件。如果你的任务是为图像添加标签,那么这些数据点可能是图像。
‰
**预期输出的示例。**对于语音识别任务来说,这些示例可能是人们根据声音文件整理生成的文本。对于图像标记任务来说,预期输出可能是“狗”“猫”之类的标签。
‰
**衡量算法效果好坏的方法。**这一衡量方法是为了计算算法的当前输出与预期输出的差距。衡量结果是一种反馈信号,用于调节算法的工作方式。这个调节步骤就是我们所说的学习。
机器学习模型将输入数据变换为有意义的输出,这是一个从已知的输入和输出示例中进行“学习”的过程。因此,机器学习和深度学习的核心问题在于有意义地变换数据,换句话说,在于学习输入数据的有用表示(representation)——这种表示可以让数据更接近预期输出。在进一步讨论之前,我们需要先回答一个问题:什么是表示?这一概念的核心在于以一种不同的方式来查看数据(即表征数据或将数据编码)。
例如,彩色图像可以编码为RGB(红-绿-蓝)格式或HSV(色相-饱和度-明度)格式,这是对相同数据的两种不同表示。在处理某些任务时,使用某种表示可能会很困难,但换用另一种表示就会变得很简单。举个例子,对于“选择图像中所有红色像素”这个任务,使用RGB格式会更简单,而对于“降低图像饱和度”这个任务,使用HSV格式则更简单。机器学习模型都是为输入数据寻找合适的表示——对数据进行变换,使其更适合手头的任务(比如分类任务)。
我们来具体说明这一点。考虑x轴、y轴和在这个(x, y)坐标系中由坐标表示的一些点,如图1-3所示。
可以看到,图中有一些白点和一些黑点。假设我们想要开发一个算法,输入一个点的坐标(x, y),就能够判断这个点是黑色还是白色。在这个例子中:
‰ 输入是点的坐标;
‰ 预期输出是点的颜色;
‰ 衡量算法效果好坏的一种方法是,正确分类的点所占的百分比。
这里我们需要的是一种新的数据表示,可以明确区分白点与黑点。可用的方法有很多,这里用的是坐标变换,如图1-4所示。
在这个新的坐标系中,点的坐标可以看作数据的一种新的表示。这种表示很棒!利用这种新的表示,用一条简单的规则就可以描述黑/白分类问题:“x>0的是黑点”或“x<0的是白点”。这种新的表示基本上解决了该分类问题。
在这个例子中,我们人为定义了坐标变换。但是,如果我们尝试系统性地搜索各种可能的坐标变换,并用正确分类的点所占百分比作为反馈信号,那么我们做的就是机器学习。机器学习中的学习指的是,寻找更好数据表示的自动搜索过程。
所有机器学习算法都包括自动寻找这样一种变换:这种变换可以根据任务将数据转化为更加有用的表示。这些操作可能是前面提到的坐标变换,也可能是线性投影(可能会破坏信息)、平移、非线性操作(比如“选择所有x>0的点”),等等。机器学习算法在寻找这些变换时通常没有什么创造性,而仅仅是遍历一组预先定义好的操作,这组操作叫作假设空间(hypothesis space)。
这就是机器学习的技术定义:在预先定义好的可能性空间中,利用反馈信号的指引来寻找输入数据的有用表示。这个简单的想法可以解决相当多的智能任务,从语音识别到自动驾驶都能解决。
现在你理解了学习的含义,下面我们来看一下深度学习的特殊之处。
1.1.4 深度学习之“深度”
深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。这一领域的其他名称包括分层表示学习(layered representations learning)和层级表示学习(hierarchical representations learning)**。
现代深度学习通常包含数十个甚至上百个连续的表示层,这些表示层全都是从训练数据中自动学习的。与此相反,其他机器学习方法的重点往往是仅仅学习一两层的数据表示,因此有时也被称为浅层学习(shallow learning)。
在深度学习中,这些分层表示几乎总是通过叫作神经网络(neural network)的模型来学习得到的。神经网络的结构是逐层堆叠。神经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。
你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原理进行建模的,但事实并非如此。对于这一领域的新人来说,如果认为深度学习与神经生物学存在任何关系,那将使人困惑,只会起到反作用。你无须那种“就像我们的头脑一样”的神秘包装,最好也忘掉读过的深度学习与生物学之间的假想联系。就我们的目的而言,深度学习是从数据中学习表示的一种数学框架。
深度学习算法学到的表示是什么样的?我们来看一个多层网络(见图1-5)如何对数字图像进行变换,以便识别图像中所包含的数字。
如图1-6所示,这个网络将数字图像转换成与原始图像差别越来越大的表示,而其中关于最终结果的信息却越来越丰富。你可以将深度网络看作多级信息蒸馏操作:信息穿过连续的过滤器,其纯度越来越高(即对任务的帮助越来越大)。
这就是深度学习的技术定义:学习数据表示的多级方法。这个想法很简单,但事实证明,非常简单的机制如果具有足够大的规模,将会产生魔法般的效果。
1.1.5 用三张图理解深度学习的工作原理
现在你已经知道,机器学习是将输入(比如图像)映射到目标(比如标签“猫”),这一过程是通过观察许多输入和目标的示例来完成的。你还知道,深度神经网络通过一系列简单的数据变换(层)来实现这种输入到目标的映射,而这些数据变换都是通过观察示例学习到的。下面来具体看一下这种学习过程是如何发生的。
神经网络中每层对输入数据所做的具体操作保存在该层的权重(weight)中,其本质是一串数字。用术语来说,每层实现的变换由其权重来参数化(parameterize,见图1-7)。权重有时也被称为该层的参数(parameter)。
在这种语境下,学习的意思是为神经网络的所有层找到一组权重值,使得该网络能够将每个示例输入与其目标正确地一一对应。但重点来了:一个深度神经网络可能包含数千万个参数。找到所有参数的正确取值可能是一项非常艰巨的任务,特别是考虑到修改某个参数值将会影响其他所有参数的行为。
想要控制一件事物,首先需要能够观察它。想要控制神经网络的输出,就需要能够衡量该输出与预期值之间的距离。这是神经网络损失函数(loss function)的任务,该函数也叫目标函数(objective function)。损失函数的输入是网络预测值与真实目标值(即你希望网络输出的结果),然后计算一个距离值,衡量该网络在这个示例上的效果好坏(见图1-8)。
深度学习的基本技巧是利用这个距离值作为反馈信号来对权重值进行微调,以降低当前示例对应的损失值(见图1-9)。这种调节由优化器(optimizer)来完成,它实现了所谓的反向传播(backpropagation)算法,这是深度学习的核心算法。下一章中会详细地解释反向传播的工作原理。
一开始对神经网络的权重随机赋值,因此网络只是实现了一系列随机变换。其输出结果自然也和理想值相去甚远,相应地,损失值也很高。但随着网络处理的示例越来越多,权重值也在向正确的方向逐步微调,损失值也逐渐降低。这就是训练循环(training loop),将这种循环重复足够多的次数(通常对数千个示
例进行数十次迭代),得到的权重值可以使损失函数最小。具有最小损失的网络,其输出值与目标值尽可能地接近,这就是训练好的网络。再次强调,这是一个简单的机制,一旦具有足够大的规模,将会产生魔法般的效果。
1.1.6 深度学习已经取得的进展
虽然深度学习是机器学习一个相当有年头的分支领域,但在21世纪前十年才崛起。在随后的几年里,它在实践中取得了革命性进展,在视觉和听觉等感知问题上取得了令人瞩目的成果,而这些问题所涉及的技术,在人类看来是非常自然、非常直观的,但长期以来却一直是机器难以解决的。
特别要强调的是,深度学习已经取得了以下突破,它们都是机器学习历史上非常困难的领域:
‰ 接近人类水平的图像分类
‰ 接近人类水平的语音识别
‰ 接近人类水平的手写文字转录
‰ 更好的机器翻译
‰ 更好的文本到语音转换
‰ 数字助理,比如谷歌即时(Google Now)和亚马逊Alexa‰ 接近人类水平的自动驾驶
‰ 更好的广告定向投放,Google、百度、必应都在使用
‰ 更好的网络搜索结果
‰ 能够回答用自然语言提出的问题
‰ 在围棋上战胜人类
我们仍然在探索深度学习能力的边界。我们已经开始将其应用于机器感知和自然语言理解之外的各种问题,比如形式推理。如果能够成功的话,这可能预示着深度学习将能够协助人类进行科学研究、软件开发等活动。
1.1.7 不要相信短期炒作
虽然深度学习近年来取得了令人瞩目的成就,但人们对这一领域在未来十年间能够取得的成就似乎期望过高。虽然一些改变世界的应用(比如自动驾驶汽车)已经触手可及,但更多的应用可能在长时间内仍然难以实现,比如可信的对话系统、达到人类水平的跨任意语言的机器翻译、达到人类水平的自然语言理解。
我们尤其不应该把达到人类水平的通用智能(human-level general intelligence)的讨论太当回事。在短期内期望过高的风险是,一旦技术上没有实现,那么研究投资将会停止,而这会导致在很长一段时间内进展缓慢。
这种事曾经发生过。人们曾对人工智能极度乐观,随后是失望与怀疑,进而导致资金匮乏。这种循环发生过两次,最早始于20世纪60年代的符号主义人工智能。在早期的那些年里,人们激动地预测着人工智能的未来。马文•闵斯基是符号主义人工智能方法最有名的先驱和支持者之一,他在1967年宣称:“在一代人的时间内……将基本解决创造‘人工智能’的问题。”三年后的1970年,他做出了更为精确的定量预测:“在三到八年的时间里,我们将拥有一台具有人类平均智能的机器。”
在2021年,这一目标看起来仍然十分遥远,遥远到我们无法预测需要多长时间才能实现。但在20世纪60年代和70年代初,一些专家却相信这一目标近在咫尺(正如今天许多人所认为的那样)。几年之后,由于这些过高的期望未能实现,研究人员和政府资金均转向其他领域,这标志着第一次人工智能冬天(AI winter)的开始(这一说法来自“核冬天”,因为当时是冷战高峰之后不久)。
这并不是人工智能的最后一个冬天。20世纪80年代,一种新的符号主义人工智能——专家系统(expert system)——开始在大公司中受到追捧。最初的几个成功案例引发了一轮投资热潮,进而全球企业都开始设立人工智能部门来开发专家系统。1985年前后,各家公司每年在这项技术上的花费超过10亿美元。但到了20世纪90年代初,这些系统的维护费用变得很高,难以扩展,并且应用范围有限,人们逐渐对其失去兴趣。于是开始了第二次人工智能冬天。
我们可能正在见证人工智能炒作与让人失望的第三次循环,而且我们仍处于极度乐观的阶段。最好的做法是降低我们的短期期望,确保对这一技术领域不太了解的人能够清楚地知道深度学习能做什么、不能做什么。
1.1.8 人工智能的未来
虽然我们对人工智能的短期期望可能不切实际,但长远来看前景是光明的。我们才刚刚开始将深度学习应用于许多重要的问题,从医疗诊断到数字助手,在这些问题上深度学习都发挥了变革性作用。过去五年里,人工智能研究一直在以惊人的速度发展,这在很大程度上是由于人工智能短短的历史中前所未见的资金投入,但到目前为止,这些进展却很少能够转化为改变世界的产品和流程。
深度学习的大多数研究成果尚未得到应用,至少尚未应用到它在各行各业中能够解决的所有问题上。你的医生和会计师都还没有使用人工智能。你在日常生活中可能也不会用到人工智能。当然,你可以向智能手机提出简单的问题并得到合理的回答,也可以在亚马逊网站上得到相当有用的产品推荐,还可以在谷歌相册(Google Photos)网站搜索“生日”并立刻找到上个月你女儿生日聚会的照片。与过去相比,这些技术已大不相同,但这些工具仍然只是日常生活的陪衬。人工智能仍需进一步转变为我们工作、思考和生活的核心。
眼下,我们似乎很难相信人工智能会对世界产生巨大影响,因为它还没有被广泛地部署应用——正如1995年,我们也难以相信互联网在未来会产生的影响。当时,大多数人都没有认识到互联网与他们的关系,以及互联网将如何改变他们的生活。今天的深度学习和人工智能也是如此。但不要怀疑:人工智能即将到来。在不远的未来,人工智能将会成为你的助手,甚至成为你的朋友。它会回答你的问题,帮助你教育孩子,并关注你的健康。它还会将生活用品送到你家门口,并开车将你从A地送到B地。它还会是你与日益复杂的、信息密集的世界之间的接口。更为重要的是,人工智能将会帮助科学家在所有科学领域(从基因学到数学)取得突破性进展,从而帮助人类整体向前发展。
在这个过程中,我们可能会经历一些挫折,也可能会遇到新的人工智能冬天,正如互联网行业那样,在1998—1999年被过度炒作,进而在21世纪初遭遇破产,并导致投资停止。但我们最终会实现上述目标。人工智能最终将应用到我们社会和日常生活的几乎所有方面,正如今天的互联网一样。
不要相信短期的炒作,但一定要相信长期的愿景。人工智能可能需要一段时间才能充分发挥其潜力。这一潜力的范围大到难以想象,但人工智能终将到来,它将以一种奇妙的方式改变我们的世界。
机器学习的范围
机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。
从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。
在这节对机器学习这些相关领域的介绍有助于我们理清机器学习的应用场景与研究范围,更好的理解后面的算法与应用层次。
下图是机器学习所牵扯的一些相关范围的学科与研究领域。
1.模式识别
模式识别=机器学习。两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。
2.数据挖掘
数据挖掘=机器学习+数据库。这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。
3.统计学习
统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。
4.计算机视觉
计算机视觉=图像处理+机器学习。图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深度学习的发展,大大促进了计算机图像识别的效果,因此未来计算机视觉界的发展前景不可估量。
5.语音识别
语音识别=语音处理+机器学习。语音识别就是音频处理技术与机器学习的结合。语音识别技术一般不会单独使用,一般会结合自然语言处理的相关技术。目前的相关应用有苹果的语音助手siri等。
6.自然语言处理
自然语言处理=文本处理+机器学习。自然语言处理技术主要是让机器理解人类的语言的一门领域。在自然语言处理技术中,大量使用了编译原理相关的技术,例如词法分析,语法分析等等,除此之外,在理解这个层面,则使用了语义理解,机器学习等技术。作为唯一由人类自身创造的符号,自然语言处理一直是机器学习界不断研究的方向。按照百度机器学习专家余凯的说法“听与看,说白了就是阿猫和阿狗都会的,而只有语言才是人类独有的”。如何利用机器学习技术进行自然语言的的深度理解,一直是工业和学术界关注的焦点。
可以看出机器学习在众多领域的外延和应用。机器学习技术的发展促使了很多智能领域的进步,改善着我们的生活。
个人公众号 yk 坤帝
获取更多学习资料,学习建议
更多推荐
所有评论(0)